INTEGRAL CALCULUS FOR VECTORS

by

R. D. Young, Dept. of Physics, Illinois State Univ.

1. Introduction .. 1
2. Procedures .. 2
Acknowledgments ... 2
Title: Integral Calculus for Vectors

Author: R. D. Young, Dept. of Physics, Illinois State Univ.

Version: 10/18/2001 Evaluation: Stage B0

Length: 2 hr; 8 pages

Input Skills:
1. Vocabulary: line, surface, and volume integrals.
2. Unknown: assume (MISN-0-479).

Output Skills (Knowledge):
K1. Write down Gauss’s divergence theorem.
K2. Write down Stokes’s theorem.
K3. Recognize some of the alternate form of Gauss’s theorem (such as Green’s theorem).
K4. Recognize some of the alternate forms of Stokes’s theorem.
K5. Prove the various forms of Gauss’s theorem, starting with:
\[\int_S \vec{V} \cdot d\vec{\sigma} = \int_V \nabla \cdot \vec{V} \, dV. \]
K6. Prove the various forms of Stokes’s theorem, beginning with:
\[\oint \vec{V} \cdot d\vec{\ell} = \int_S (\nabla \times \vec{V}) \cdot d\vec{\sigma}. \]

Output Skills (Rule Application):
R1. Evaluate integrals involving derivatives of scalar and vector fields using the various integral theorems.

External Resources (Required):

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in transferring physics from one person to another. We support manuscript processing and distribution, along with communication and information systems. We also work with employers to identify basic scientific skills as well as physics topics that are needed in science and technology. A number of our publications are aimed at assisting users in acquiring such skills.

Our publications are designed: (i) to be updated quickly in response to field tests and new scientific developments; (ii) to be used in both classroom and professional settings; (iii) to show the prerequisite dependencies existing among the various chunks of physics knowledge and skill, as a guide both to mental organization and to use of the materials; and (iv) to be adapted quickly to specific user needs ranging from single-skill instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF
Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE
D. Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A. A. Strassenburg S. U. N. Y., Stony Brook

Views expressed in a module are those of the module author(s) and are not necessarily those of other project participants.

© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg., Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal use policies see:

INTEGRAL CALCULUS FOR VECTORS

by

R. D. Young, Dept. of Physics, Illinois State Univ.

1. Introduction

In this Unit, various integral theorems involving vectors are developed. Many physical quantities can be expressed in terms of vector integrals. For example, work \(W \) associated with a force \(\vec{F} \) being exerted on an object traversing a curve \(C \) is actually a line integral,

\[
W = \int_C \vec{F} \cdot d\vec{r}
\]

where \(C \) is a space curve being traversed by a particle of mass \(m \) located at position \(\vec{r} \) in \(C \) as shown in the diagram below:

Another example is electric flux \(\phi \) across a surface \(S \) in an electric field \(\vec{E} \). The electric flux is then given by this surface integral:

\[
\phi = \int_S \vec{E} \cdot d\vec{\sigma}
\]

where \(d\vec{\sigma} = \hat{n} \, dS \) and \(\hat{n} \) is the positive unit normal to the surface \(S \). When the surface \(S \) encloses a volume \(V \), Gauss’s Divergence Theorem, which will be studied in this unit, allows us to rewrite this as:

\[
\phi = \int_V \nabla \cdot \vec{E} \, d\tau
\]

where \(d\tau \) is the element of volume. The use of Maxwell’s equations allows us to relate the electric flux to the total charge \(Q \) contained in the volume

\[
\phi = \frac{1}{\epsilon_0} Q.
\]

There are many other examples of the physical applications of the material in this unit.

2. Procedures

1. Read in Arfken, section 1.11, and Spiegel, page 154, and Supplementary Problem 6.30. Write down Gauss’s Divergence Theorem. Be certain to memorize the conditions on the vector fields and any derivatives of vector fields for the theorem to be valid.

2. Read in Arfken, section 1.12, and Spiegel, page 154 and Supplementary Problem 6.34. Write down Stokes’s Theorem. Be certain to memorize the conditions on the vector fields and and derivatives of vector fields for the theorem to be valid.

3. Write down the derivation of eqs. 1.108, 1.109, 1.112, and 1.113 of Arfken.

4. Solve these problems in Arfken: 1.11.1, 1.11.3, 1.12.1, 1.12.2. These problems deal with the numerical evaluation of integrals involving vectors by using Gauss’s Divergence Theorem and Stokes’s Theorem.

Note: The purpose of this unit is to learn how to use Gauss’s and Stokes’s Theorems \textit{without} a detailed numerical computation of the line, surface, and volume integrals. You should already have mastered line, surface, and volume integrals.

Acknowledgments

The author would like to thank Illinois State University for support in the construction of this lesson. Preparation of this module was supported in part by the National Science Foundation, Division of Science Education Development and Research, through Grant #SED 74-20088 to Michigan State University.