SOME USES OF RADIOACTIVITY

by
Peter Signell

1. Procedure ... 1
2. Problems ... 1
3. Answers ... 1
Title: Some Uses of Radioactivity

Author: P. Signell, Department of Physics, Michigan State University,
 East Lansing, MI 48824; (517) 353-2047

Version: 2/1/2000 Evaluation: Stage B0

Length: 1 hr; 8 pages

Input Skills:

1. Use the exponential decay law and rate of decay data to deduce
 decay parameters and also rates at other times (MISN-0-311) or
 (MISN-0-264).

Output Skills (Knowledge):

K1. Starting from the exponential decay law, derive the relationship
 between the “disintegration constant” (also called “decay con-
 stant”) and the “half-life.”

K2. Solve these problems in Physics, Alonso and Finn: 22.14c (includ-
 ing a numerical check), 22.16, and 22.17. Closed book, no answers
 provided.

External Resources (Required):

 this module’s Local Guide for availability.

Post-Options:

1. “Quantum Tunnelling Through a Barrier: Pictures, Probability
 Flow, Reactions” (MISN-0-250).

THE IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D. Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A. A. Strassenburg S. U. N. Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

SOME USES OF RADIOACTIVITY
by
Peter Signell

1. Procedure
Read Sections 22.1, 22.2, 22.7, 22.8 in Physics, by M. Alonso and E. J. Finn (Addison-Wesley, 1970) (see this module’s Local Guide for availability).\(^1\)

2. Problems
22.13 There are 3.15 \(\times 10^7\) sec/yr.

22.14 In addition, compute the activity of the short-lived and long-lived substances separately, numerically, at the solution-time. Check the ratio.

22.16 (revised): Find:
 a. no. Fe\(^{59}\) atoms at \(t = 0\);
 b. no. Fe\(^{59}\) atoms at \(t = 12\) days;
 c. no. Fe\(^{59}\) atoms in oil sample;
 d. no. Fe\(^{59}\) atoms in all oil;
 e. fraction of all Fe\(^{59}\) atoms which are in the oil;
 f. mass of Fe in oil.

3. Answers
22.13: Book answer is OK.
22.16: 1.874 \(\times 10^{15}\), 1.558 \(\times 10^{15}\), 5.514 \(\times 10^9\), 2.095 \(\times 10^{11}\), 1.345 \(\times 10^{-4}\), 3.4 mg.
22.17: 1160 B.C.

\(^1\)For an examination of the microscopic details of the nuclear \(\alpha\)-decay process see “Quantum Tunnelling Through a Barrier: Pictures, Probability Flow, Reactions” (MISN-0-250).
MODEL EXAM

1. See Output Skill K1 in this module’s ID Sheet.

Brief Answers:

1. See this module’s textual material.
2. See this module’s ANSWERS section.